Heroku/heroku/qr.py

1566 lines
41 KiB
Python

# https://raw.githubusercontent.com/lincolnloop/python-qrcode/b80fea6ee7e75f3024b9ed7adf891a143e0b14e3/qrcode/main.py
# The code was copied in such weird way since the original project requires Pillow
# ©️ Codrago, 2024-2025
# This file is a part of Heroku Userbot
# 🌐 https://github.com/coddrago/Heroku
# You can redistribute it and/or modify it under the terms of the GNU AGPLv3
# 🔑 https://www.gnu.org/licenses/agpl-3.0.html
import math
import re
import sys
from bisect import bisect_left
from typing import Dict, List, NamedTuple, Optional, cast
ERROR_CORRECT_L = 1
ERROR_CORRECT_M = 0
ERROR_CORRECT_Q = 3
ERROR_CORRECT_H = 2
EXP_TABLE = list(range(256))
LOG_TABLE = list(range(256))
for i in range(8):
EXP_TABLE[i] = 1 << i
for i in range(8, 256):
EXP_TABLE[i] = (
EXP_TABLE[i - 4] ^ EXP_TABLE[i - 5] ^ EXP_TABLE[i - 6] ^ EXP_TABLE[i - 8]
)
for i in range(255):
LOG_TABLE[EXP_TABLE[i]] = i
def rs_blocks(version, error_correction):
if error_correction not in RS_BLOCK_OFFSET: # pragma: no cover
raise Exception(
"bad rs block @ version: %s / error_correction: %s"
% (version, error_correction)
)
offset = RS_BLOCK_OFFSET[error_correction]
rs_block = RS_BLOCK_TABLE[(version - 1) * 4 + offset]
blocks = []
for i in range(0, len(rs_block), 3):
count, total_count, data_count = rs_block[i : i + 3]
for _ in range(count):
blocks.append(RSBlock(total_count, data_count))
return blocks
RS_BLOCK_OFFSET = {
ERROR_CORRECT_L: 0,
ERROR_CORRECT_M: 1,
ERROR_CORRECT_Q: 2,
ERROR_CORRECT_H: 3,
}
RS_BLOCK_TABLE = (
# L
# M
# Q
# H
# 1
(1, 26, 19),
(1, 26, 16),
(1, 26, 13),
(1, 26, 9),
# 2
(1, 44, 34),
(1, 44, 28),
(1, 44, 22),
(1, 44, 16),
# 3
(1, 70, 55),
(1, 70, 44),
(2, 35, 17),
(2, 35, 13),
# 4
(1, 100, 80),
(2, 50, 32),
(2, 50, 24),
(4, 25, 9),
# 5
(1, 134, 108),
(2, 67, 43),
(2, 33, 15, 2, 34, 16),
(2, 33, 11, 2, 34, 12),
# 6
(2, 86, 68),
(4, 43, 27),
(4, 43, 19),
(4, 43, 15),
# 7
(2, 98, 78),
(4, 49, 31),
(2, 32, 14, 4, 33, 15),
(4, 39, 13, 1, 40, 14),
# 8
(2, 121, 97),
(2, 60, 38, 2, 61, 39),
(4, 40, 18, 2, 41, 19),
(4, 40, 14, 2, 41, 15),
# 9
(2, 146, 116),
(3, 58, 36, 2, 59, 37),
(4, 36, 16, 4, 37, 17),
(4, 36, 12, 4, 37, 13),
# 10
(2, 86, 68, 2, 87, 69),
(4, 69, 43, 1, 70, 44),
(6, 43, 19, 2, 44, 20),
(6, 43, 15, 2, 44, 16),
# 11
(4, 101, 81),
(1, 80, 50, 4, 81, 51),
(4, 50, 22, 4, 51, 23),
(3, 36, 12, 8, 37, 13),
# 12
(2, 116, 92, 2, 117, 93),
(6, 58, 36, 2, 59, 37),
(4, 46, 20, 6, 47, 21),
(7, 42, 14, 4, 43, 15),
# 13
(4, 133, 107),
(8, 59, 37, 1, 60, 38),
(8, 44, 20, 4, 45, 21),
(12, 33, 11, 4, 34, 12),
# 14
(3, 145, 115, 1, 146, 116),
(4, 64, 40, 5, 65, 41),
(11, 36, 16, 5, 37, 17),
(11, 36, 12, 5, 37, 13),
# 15
(5, 109, 87, 1, 110, 88),
(5, 65, 41, 5, 66, 42),
(5, 54, 24, 7, 55, 25),
(11, 36, 12, 7, 37, 13),
# 16
(5, 122, 98, 1, 123, 99),
(7, 73, 45, 3, 74, 46),
(15, 43, 19, 2, 44, 20),
(3, 45, 15, 13, 46, 16),
# 17
(1, 135, 107, 5, 136, 108),
(10, 74, 46, 1, 75, 47),
(1, 50, 22, 15, 51, 23),
(2, 42, 14, 17, 43, 15),
# 18
(5, 150, 120, 1, 151, 121),
(9, 69, 43, 4, 70, 44),
(17, 50, 22, 1, 51, 23),
(2, 42, 14, 19, 43, 15),
# 19
(3, 141, 113, 4, 142, 114),
(3, 70, 44, 11, 71, 45),
(17, 47, 21, 4, 48, 22),
(9, 39, 13, 16, 40, 14),
# 20
(3, 135, 107, 5, 136, 108),
(3, 67, 41, 13, 68, 42),
(15, 54, 24, 5, 55, 25),
(15, 43, 15, 10, 44, 16),
# 21
(4, 144, 116, 4, 145, 117),
(17, 68, 42),
(17, 50, 22, 6, 51, 23),
(19, 46, 16, 6, 47, 17),
# 22
(2, 139, 111, 7, 140, 112),
(17, 74, 46),
(7, 54, 24, 16, 55, 25),
(34, 37, 13),
# 23
(4, 151, 121, 5, 152, 122),
(4, 75, 47, 14, 76, 48),
(11, 54, 24, 14, 55, 25),
(16, 45, 15, 14, 46, 16),
# 24
(6, 147, 117, 4, 148, 118),
(6, 73, 45, 14, 74, 46),
(11, 54, 24, 16, 55, 25),
(30, 46, 16, 2, 47, 17),
# 25
(8, 132, 106, 4, 133, 107),
(8, 75, 47, 13, 76, 48),
(7, 54, 24, 22, 55, 25),
(22, 45, 15, 13, 46, 16),
# 26
(10, 142, 114, 2, 143, 115),
(19, 74, 46, 4, 75, 47),
(28, 50, 22, 6, 51, 23),
(33, 46, 16, 4, 47, 17),
# 27
(8, 152, 122, 4, 153, 123),
(22, 73, 45, 3, 74, 46),
(8, 53, 23, 26, 54, 24),
(12, 45, 15, 28, 46, 16),
# 28
(3, 147, 117, 10, 148, 118),
(3, 73, 45, 23, 74, 46),
(4, 54, 24, 31, 55, 25),
(11, 45, 15, 31, 46, 16),
# 29
(7, 146, 116, 7, 147, 117),
(21, 73, 45, 7, 74, 46),
(1, 53, 23, 37, 54, 24),
(19, 45, 15, 26, 46, 16),
# 30
(5, 145, 115, 10, 146, 116),
(19, 75, 47, 10, 76, 48),
(15, 54, 24, 25, 55, 25),
(23, 45, 15, 25, 46, 16),
# 31
(13, 145, 115, 3, 146, 116),
(2, 74, 46, 29, 75, 47),
(42, 54, 24, 1, 55, 25),
(23, 45, 15, 28, 46, 16),
# 32
(17, 145, 115),
(10, 74, 46, 23, 75, 47),
(10, 54, 24, 35, 55, 25),
(19, 45, 15, 35, 46, 16),
# 33
(17, 145, 115, 1, 146, 116),
(14, 74, 46, 21, 75, 47),
(29, 54, 24, 19, 55, 25),
(11, 45, 15, 46, 46, 16),
# 34
(13, 145, 115, 6, 146, 116),
(14, 74, 46, 23, 75, 47),
(44, 54, 24, 7, 55, 25),
(59, 46, 16, 1, 47, 17),
# 35
(12, 151, 121, 7, 152, 122),
(12, 75, 47, 26, 76, 48),
(39, 54, 24, 14, 55, 25),
(22, 45, 15, 41, 46, 16),
# 36
(6, 151, 121, 14, 152, 122),
(6, 75, 47, 34, 76, 48),
(46, 54, 24, 10, 55, 25),
(2, 45, 15, 64, 46, 16),
# 37
(17, 152, 122, 4, 153, 123),
(29, 74, 46, 14, 75, 47),
(49, 54, 24, 10, 55, 25),
(24, 45, 15, 46, 46, 16),
# 38
(4, 152, 122, 18, 153, 123),
(13, 74, 46, 32, 75, 47),
(48, 54, 24, 14, 55, 25),
(42, 45, 15, 32, 46, 16),
# 39
(20, 147, 117, 4, 148, 118),
(40, 75, 47, 7, 76, 48),
(43, 54, 24, 22, 55, 25),
(10, 45, 15, 67, 46, 16),
# 40
(19, 148, 118, 6, 149, 119),
(18, 75, 47, 31, 76, 48),
(34, 54, 24, 34, 55, 25),
(20, 45, 15, 61, 46, 16),
)
def glog(n):
if n < 1: # pragma: no cover
raise ValueError(f"glog({n})")
return LOG_TABLE[n]
def gexp(n):
return EXP_TABLE[n % 255]
class Polynomial:
def __init__(self, num, shift):
if not num: # pragma: no cover
raise Exception(f"{len(num)}/{shift}")
offset = 0
for offset in range(len(num)):
if num[offset] != 0:
break
self.num = num[offset:] + [0] * shift
def __getitem__(self, index):
return self.num[index]
def __iter__(self):
return iter(self.num)
def __len__(self):
return len(self.num)
def __mul__(self, other):
num = [0] * (len(self) + len(other) - 1)
for i, item in enumerate(self):
for j, other_item in enumerate(other):
num[i + j] ^= gexp(glog(item) + glog(other_item))
return Polynomial(num, 0)
def __mod__(self, other):
difference = len(self) - len(other)
if difference < 0:
return self
ratio = glog(self[0]) - glog(other[0])
num = [
item ^ gexp(glog(other_item) + ratio)
for item, other_item in zip(self, other)
]
if difference:
num.extend(self[-difference:])
# recursive call
return Polynomial(num, 0) % other
class RSBlock(NamedTuple):
total_count: int
data_count: int
rsPoly_LUT = {
7: [1, 127, 122, 154, 164, 11, 68, 117],
10: [1, 216, 194, 159, 111, 199, 94, 95, 113, 157, 193],
13: [1, 137, 73, 227, 17, 177, 17, 52, 13, 46, 43, 83, 132, 120],
15: [1, 29, 196, 111, 163, 112, 74, 10, 105, 105, 139, 132, 151, 32, 134, 26],
16: [1, 59, 13, 104, 189, 68, 209, 30, 8, 163, 65, 41, 229, 98, 50, 36, 59],
17: [1, 119, 66, 83, 120, 119, 22, 197, 83, 249, 41, 143, 134, 85, 53, 125, 99, 79],
18: [
1,
239,
251,
183,
113,
149,
175,
199,
215,
240,
220,
73,
82,
173,
75,
32,
67,
217,
146,
],
20: [
1,
152,
185,
240,
5,
111,
99,
6,
220,
112,
150,
69,
36,
187,
22,
228,
198,
121,
121,
165,
174,
],
22: [
1,
89,
179,
131,
176,
182,
244,
19,
189,
69,
40,
28,
137,
29,
123,
67,
253,
86,
218,
230,
26,
145,
245,
],
24: [
1,
122,
118,
169,
70,
178,
237,
216,
102,
115,
150,
229,
73,
130,
72,
61,
43,
206,
1,
237,
247,
127,
217,
144,
117,
],
26: [
1,
246,
51,
183,
4,
136,
98,
199,
152,
77,
56,
206,
24,
145,
40,
209,
117,
233,
42,
135,
68,
70,
144,
146,
77,
43,
94,
],
28: [
1,
252,
9,
28,
13,
18,
251,
208,
150,
103,
174,
100,
41,
167,
12,
247,
56,
117,
119,
233,
127,
181,
100,
121,
147,
176,
74,
58,
197,
],
30: [
1,
212,
246,
77,
73,
195,
192,
75,
98,
5,
70,
103,
177,
22,
217,
138,
51,
181,
246,
72,
25,
18,
46,
228,
74,
216,
195,
11,
106,
130,
150,
],
}
# QR encoding modes.
MODE_NUMBER = 1 << 0
MODE_ALPHA_NUM = 1 << 1
MODE_8BIT_BYTE = 1 << 2
MODE_KANJI = 1 << 3
# Encoding mode sizes.
MODE_SIZE_SMALL = {
MODE_NUMBER: 10,
MODE_ALPHA_NUM: 9,
MODE_8BIT_BYTE: 8,
MODE_KANJI: 8,
}
MODE_SIZE_MEDIUM = {
MODE_NUMBER: 12,
MODE_ALPHA_NUM: 11,
MODE_8BIT_BYTE: 16,
MODE_KANJI: 10,
}
MODE_SIZE_LARGE = {
MODE_NUMBER: 14,
MODE_ALPHA_NUM: 13,
MODE_8BIT_BYTE: 16,
MODE_KANJI: 12,
}
ALPHA_NUM = b"0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ $%*+-./:"
RE_ALPHA_NUM = re.compile(b"^[" + re.escape(ALPHA_NUM) + rb"]*\Z")
# The number of bits for numeric delimited data lengths.
NUMBER_LENGTH = {3: 10, 2: 7, 1: 4}
PATTERN_POSITION_TABLE = [
[],
[6, 18],
[6, 22],
[6, 26],
[6, 30],
[6, 34],
[6, 22, 38],
[6, 24, 42],
[6, 26, 46],
[6, 28, 50],
[6, 30, 54],
[6, 32, 58],
[6, 34, 62],
[6, 26, 46, 66],
[6, 26, 48, 70],
[6, 26, 50, 74],
[6, 30, 54, 78],
[6, 30, 56, 82],
[6, 30, 58, 86],
[6, 34, 62, 90],
[6, 28, 50, 72, 94],
[6, 26, 50, 74, 98],
[6, 30, 54, 78, 102],
[6, 28, 54, 80, 106],
[6, 32, 58, 84, 110],
[6, 30, 58, 86, 114],
[6, 34, 62, 90, 118],
[6, 26, 50, 74, 98, 122],
[6, 30, 54, 78, 102, 126],
[6, 26, 52, 78, 104, 130],
[6, 30, 56, 82, 108, 134],
[6, 34, 60, 86, 112, 138],
[6, 30, 58, 86, 114, 142],
[6, 34, 62, 90, 118, 146],
[6, 30, 54, 78, 102, 126, 150],
[6, 24, 50, 76, 102, 128, 154],
[6, 28, 54, 80, 106, 132, 158],
[6, 32, 58, 84, 110, 136, 162],
[6, 26, 54, 82, 110, 138, 166],
[6, 30, 58, 86, 114, 142, 170],
]
G15 = (1 << 10) | (1 << 8) | (1 << 5) | (1 << 4) | (1 << 2) | (1 << 1) | (1 << 0)
G18 = (
(1 << 12)
| (1 << 11)
| (1 << 10)
| (1 << 9)
| (1 << 8)
| (1 << 5)
| (1 << 2)
| (1 << 0)
)
G15_MASK = (1 << 14) | (1 << 12) | (1 << 10) | (1 << 4) | (1 << 1)
PAD0 = 0xEC
PAD1 = 0x11
# Precompute bit count limits, indexed by error correction level and code size
def _data_count(block):
return block.data_count
BIT_LIMIT_TABLE = [
[0]
+ [
8 * sum(map(_data_count, rs_blocks(version, error_correction)))
for version in range(1, 41)
]
for error_correction in range(4)
]
def BCH_type_info(data):
d = data << 10
while BCH_digit(d) - BCH_digit(G15) >= 0:
d ^= G15 << (BCH_digit(d) - BCH_digit(G15))
return ((data << 10) | d) ^ G15_MASK
def BCH_type_number(data):
d = data << 12
while BCH_digit(d) - BCH_digit(G18) >= 0:
d ^= G18 << (BCH_digit(d) - BCH_digit(G18))
return (data << 12) | d
def BCH_digit(data):
digit = 0
while data != 0:
digit += 1
data >>= 1
return digit
def pattern_position(version):
return PATTERN_POSITION_TABLE[version - 1]
def mask_func(pattern):
"""
Return the mask function for the given mask pattern.
"""
if pattern == 0: # 000
return lambda i, j: (i + j) % 2 == 0
if pattern == 1: # 001
return lambda i, j: i % 2 == 0
if pattern == 2: # 010
return lambda i, j: j % 3 == 0
if pattern == 3: # 011
return lambda i, j: (i + j) % 3 == 0
if pattern == 4: # 100
return lambda i, j: (math.floor(i / 2) + math.floor(j / 3)) % 2 == 0
if pattern == 5: # 101
return lambda i, j: (i * j) % 2 + (i * j) % 3 == 0
if pattern == 6: # 110
return lambda i, j: ((i * j) % 2 + (i * j) % 3) % 2 == 0
if pattern == 7: # 111
return lambda i, j: ((i * j) % 3 + (i + j) % 2) % 2 == 0
raise TypeError("Bad mask pattern: " + pattern) # pragma: no cover
def mode_sizes_for_version(version):
if version < 10:
return MODE_SIZE_SMALL
elif version < 27:
return MODE_SIZE_MEDIUM
else:
return MODE_SIZE_LARGE
def length_in_bits(mode, version):
if mode not in (MODE_NUMBER, MODE_ALPHA_NUM, MODE_8BIT_BYTE, MODE_KANJI):
raise TypeError(f"Invalid mode ({mode})") # pragma: no cover
check_version(version)
return mode_sizes_for_version(version)[mode]
def check_version(version):
if version < 1 or version > 40:
raise ValueError(f"Invalid version (was {version}, expected 1 to 40)")
def lost_point(modules):
modules_count = len(modules)
lost_point_ = 0
lost_point_ = _lost_point_level1(modules, modules_count)
lost_point_ += _lost_point_level2(modules, modules_count)
lost_point_ += _lost_point_level3(modules, modules_count)
lost_point_ += _lost_point_level4(modules, modules_count)
return lost_point_
def _lost_point_level1(modules, modules_count):
lost_point = 0
modules_range = range(modules_count)
container = [0] * (modules_count + 1)
for row in modules_range:
this_row = modules[row]
previous_color = this_row[0]
length = 0
for col in modules_range:
if this_row[col] == previous_color:
length += 1
else:
if length >= 5:
container[length] += 1
length = 1
previous_color = this_row[col]
if length >= 5:
container[length] += 1
for col in modules_range:
previous_color = modules[0][col]
length = 0
for row in modules_range:
if modules[row][col] == previous_color:
length += 1
else:
if length >= 5:
container[length] += 1
length = 1
previous_color = modules[row][col]
if length >= 5:
container[length] += 1
lost_point += sum(
container[each_length] * (each_length - 2)
for each_length in range(5, modules_count + 1)
)
return lost_point
def _lost_point_level2(modules, modules_count):
lost_point = 0
modules_range = range(modules_count - 1)
for row in modules_range:
this_row = modules[row]
next_row = modules[row + 1]
# use iter() and next() to skip next four-block. e.g.
# d a f if top-right a != b bottom-right,
# c b e then both abcd and abef won't lost any point.
modules_range_iter = iter(modules_range)
for col in modules_range_iter:
top_right = this_row[col + 1]
if top_right != next_row[col + 1]:
# reduce 33.3% of runtime via next().
# None: raise nothing if there is no next item.
next(modules_range_iter, None)
elif top_right != this_row[col]:
continue
elif top_right != next_row[col]:
continue
else:
lost_point += 3
return lost_point
def _lost_point_level3(modules, modules_count):
# 1 : 1 : 3 : 1 : 1 ratio (dark:light:dark:light:dark) pattern in
# row/column, preceded or followed by light area 4 modules wide. From ISOIEC.
# pattern1: 10111010000
# pattern2: 00001011101
modules_range = range(modules_count)
modules_range_short = range(modules_count - 10)
lost_point = 0
for row in modules_range:
this_row = modules[row]
modules_range_short_iter = iter(modules_range_short)
col = 0
for col in modules_range_short_iter:
if (
not this_row[col + 1]
and this_row[col + 4]
and not this_row[col + 5]
and this_row[col + 6]
and not this_row[col + 9]
and (
this_row[col + 0]
and this_row[col + 2]
and this_row[col + 3]
and not this_row[col + 7]
and not this_row[col + 8]
and not this_row[col + 10]
or not this_row[col + 0]
and not this_row[col + 2]
and not this_row[col + 3]
and this_row[col + 7]
and this_row[col + 8]
and this_row[col + 10]
)
):
lost_point += 40
# horspool algorithm.
# if this_row[col + 10]:
# pattern1 shift 4, pattern2 shift 2. So min=2.
# else:
# pattern1 shift 1, pattern2 shift 1. So min=1.
if this_row[col + 10]:
next(modules_range_short_iter, None)
for col in modules_range:
modules_range_short_iter = iter(modules_range_short)
row = 0
for row in modules_range_short_iter:
if (
not modules[row + 1][col]
and modules[row + 4][col]
and not modules[row + 5][col]
and modules[row + 6][col]
and not modules[row + 9][col]
and (
modules[row + 0][col]
and modules[row + 2][col]
and modules[row + 3][col]
and not modules[row + 7][col]
and not modules[row + 8][col]
and not modules[row + 10][col]
or not modules[row + 0][col]
and not modules[row + 2][col]
and not modules[row + 3][col]
and modules[row + 7][col]
and modules[row + 8][col]
and modules[row + 10][col]
)
):
lost_point += 40
if modules[row + 10][col]:
next(modules_range_short_iter, None)
return lost_point
def _lost_point_level4(modules, modules_count):
dark_count = sum(map(sum, modules))
percent = float(dark_count) / (modules_count**2)
# Every 5% departure from 50%, rating++
rating = int(abs(percent * 100 - 50) / 5)
return rating * 10
def optimal_data_chunks(data, minimum=4):
"""
An iterator returning QRData chunks optimized to the data content.
:param minimum: The minimum number of bytes in a row to split as a chunk.
"""
data = to_bytestring(data)
num_pattern = rb"\d"
alpha_pattern = b"[" + re.escape(ALPHA_NUM) + b"]"
if len(data) <= minimum:
num_pattern = re.compile(b"^" + num_pattern + b"+$")
alpha_pattern = re.compile(b"^" + alpha_pattern + b"+$")
else:
re_repeat = b"{" + str(minimum).encode("ascii") + b",}"
num_pattern = re.compile(num_pattern + re_repeat)
alpha_pattern = re.compile(alpha_pattern + re_repeat)
num_bits = _optimal_split(data, num_pattern)
for is_num, chunk in num_bits:
if is_num:
yield QRData(chunk, mode=MODE_NUMBER, check_data=False)
else:
for is_alpha, sub_chunk in _optimal_split(chunk, alpha_pattern):
mode = MODE_ALPHA_NUM if is_alpha else MODE_8BIT_BYTE
yield QRData(sub_chunk, mode=mode, check_data=False)
def _optimal_split(data, pattern):
while data:
match = re.search(pattern, data)
if not match:
break
start, end = match.start(), match.end()
if start:
yield False, data[:start]
yield True, data[start:end]
data = data[end:]
if data:
yield False, data
def to_bytestring(data):
"""
Convert data to a (utf-8 encoded) byte-string if it isn't a byte-string
already.
"""
if not isinstance(data, bytes):
data = str(data).encode("utf-8")
return data
def optimal_mode(data):
"""
Calculate the optimal mode for this chunk of data.
"""
if data.isdigit():
return MODE_NUMBER
if RE_ALPHA_NUM.match(data):
return MODE_ALPHA_NUM
return MODE_8BIT_BYTE
class QRData:
"""
Data held in a QR compatible format.
Doesn't currently handle KANJI.
"""
def __init__(self, data, mode=None, check_data=True):
"""
If ``mode`` isn't provided, the most compact QR data type possible is
chosen.
"""
if check_data:
data = to_bytestring(data)
if mode is None:
self.mode = optimal_mode(data)
else:
self.mode = mode
if mode not in (MODE_NUMBER, MODE_ALPHA_NUM, MODE_8BIT_BYTE):
raise TypeError(f"Invalid mode ({mode})") # pragma: no cover
if check_data and mode < optimal_mode(data): # pragma: no cover
raise ValueError(f"Provided data can not be represented in mode {mode}")
self.data = data
def __len__(self):
return len(self.data)
def write(self, buffer):
if self.mode == MODE_NUMBER:
for i in range(0, len(self.data), 3):
chars = self.data[i : i + 3]
bit_length = NUMBER_LENGTH[len(chars)]
buffer.put(int(chars), bit_length)
elif self.mode == MODE_ALPHA_NUM:
for i in range(0, len(self.data), 2):
chars = self.data[i : i + 2]
if len(chars) > 1:
buffer.put(
ALPHA_NUM.find(chars[0]) * 45 + ALPHA_NUM.find(chars[1]), 11
)
else:
buffer.put(ALPHA_NUM.find(chars), 6)
else:
# Iterating a bytestring in Python 3 returns an integer,
# no need to ord().
data = self.data
for c in data:
buffer.put(c, 8)
def __repr__(self):
return repr(self.data)
class BitBuffer:
def __init__(self):
self.buffer: List[int] = []
self.length = 0
def __repr__(self):
return ".".join([str(n) for n in self.buffer])
def get(self, index):
buf_index = math.floor(index / 8)
return ((self.buffer[buf_index] >> (7 - index % 8)) & 1) == 1
def put(self, num, length):
for i in range(length):
self.put_bit(((num >> (length - i - 1)) & 1) == 1)
def __len__(self):
return self.length
def put_bit(self, bit):
buf_index = self.length // 8
if len(self.buffer) <= buf_index:
self.buffer.append(0)
if bit:
self.buffer[buf_index] |= 0x80 >> (self.length % 8)
self.length += 1
def create_bytes(buffer: BitBuffer, rs_blocks: List[RSBlock]):
offset = 0
maxDcCount = 0
maxEcCount = 0
dcdata: List[List[int]] = []
ecdata: List[List[int]] = []
for rs_block in rs_blocks:
dcCount = rs_block.data_count
ecCount = rs_block.total_count - dcCount
maxDcCount = max(maxDcCount, dcCount)
maxEcCount = max(maxEcCount, ecCount)
current_dc = [0xFF & buffer.buffer[i + offset] for i in range(dcCount)]
offset += dcCount
# Get error correction polynomial.
if ecCount in rsPoly_LUT:
rsPoly = Polynomial(rsPoly_LUT[ecCount], 0)
else:
rsPoly = Polynomial([1], 0)
for i in range(ecCount):
rsPoly = rsPoly * Polynomial([1, gexp(i)], 0)
rawPoly = Polynomial(current_dc, len(rsPoly) - 1)
modPoly = rawPoly % rsPoly
current_ec = []
mod_offset = len(modPoly) - ecCount
for i in range(ecCount):
modIndex = i + mod_offset
current_ec.append(modPoly[modIndex] if (modIndex >= 0) else 0)
dcdata.append(current_dc)
ecdata.append(current_ec)
data = []
for i in range(maxDcCount):
for dc in dcdata:
if i < len(dc):
data.append(dc[i])
for i in range(maxEcCount):
for ec in ecdata:
if i < len(ec):
data.append(ec[i])
return data
def create_data(version, error_correction, data_list):
buffer = BitBuffer()
for data in data_list:
buffer.put(data.mode, 4)
buffer.put(len(data), length_in_bits(data.mode, version))
data.write(buffer)
# Calculate the maximum number of bits for the given version.
rs_blocks_ = rs_blocks(version, error_correction)
bit_limit = sum(block.data_count * 8 for block in rs_blocks_)
if len(buffer) > bit_limit:
raise DataOverflowError(
"Code length overflow. Data size (%s) > size available (%s)"
% (len(buffer), bit_limit)
)
# Terminate the bits (add up to four 0s).
for _ in range(min(bit_limit - len(buffer), 4)):
buffer.put_bit(False)
# Delimit the string into 8-bit words, padding with 0s if necessary.
delimit = len(buffer) % 8
if delimit:
for _ in range(8 - delimit):
buffer.put_bit(False)
# Add special alternating padding bitstrings until buffer is full.
bytes_to_fill = (bit_limit - len(buffer)) // 8
for i in range(bytes_to_fill):
if i % 2 == 0:
buffer.put(PAD0, 8)
else:
buffer.put(PAD1, 8)
return create_bytes(buffer, rs_blocks_)
class DataOverflowError(Exception):
pass
ModulesType = List[List[Optional[bool]]]
# Cache modules generated just based on the QR Code version
precomputed_qr_blanks: Dict[int, ModulesType] = {}
def _check_box_size(size):
if int(size) <= 0:
raise ValueError(f"Invalid box size (was {size}, expected larger than 0)")
def _check_border(size):
if int(size) < 0:
raise ValueError(
"Invalid border value (was %s, expected 0 or larger than that)" % size
)
def _check_mask_pattern(mask_pattern):
if mask_pattern is None:
return
if not isinstance(mask_pattern, int):
raise TypeError(
f"Invalid mask pattern (was {type(mask_pattern)}, expected int)"
)
if mask_pattern < 0 or mask_pattern > 7:
raise ValueError(f"Mask pattern should be in range(8) (got {mask_pattern})")
def copy_2d_array(x):
return [row[:] for row in x]
class ActiveWithNeighbors(NamedTuple):
NW: bool
N: bool
NE: bool
W: bool
me: bool
E: bool
SW: bool
S: bool
SE: bool
def __bool__(self) -> bool:
return self.me
class QRCode:
modules: ModulesType
_version: Optional[int] = None
def __init__(
self,
version=None,
error_correction=ERROR_CORRECT_M,
box_size=10,
border=4,
):
_check_box_size(box_size)
_check_border(border)
self.version = version
self.error_correction = int(error_correction)
self.box_size = int(box_size)
# Spec says border should be at least four boxes wide, but allow for
# any (e.g. for producing printable QR codes).
self.border = int(border)
self.clear()
self._mask_pattern = None
@property
def version(self) -> int:
if self._version is None:
self.best_fit()
return cast(int, self._version)
@version.setter
def version(self, value) -> None:
if value is not None:
value = int(value)
check_version(value)
self._version = value
@property
def mask_pattern(self):
return self._mask_pattern
@mask_pattern.setter
def mask_pattern(self, pattern):
_check_mask_pattern(pattern)
self._mask_pattern = pattern
def clear(self):
"""
Reset the internal data.
"""
self.modules = [[]]
self.modules_count = 0
self.data_cache = None
self.data_list = []
def add_data(self, data, optimize=20):
"""
Add data to this QR Code.
:param optimize: Data will be split into multiple chunks to optimize
the QR size by finding to more compressed modes of at least this
length. Set to ``0`` to avoid optimizing at all.
"""
if isinstance(data, QRData):
self.data_list.append(data)
elif optimize:
self.data_list.extend(optimal_data_chunks(data, minimum=optimize))
else:
self.data_list.append(QRData(data))
self.data_cache = None
def make(self, fit=True):
"""
Compile the data into a QR Code array.
:param fit: If ``True`` (or if a size has not been provided), find the
best fit for the data to avoid data overflow errors.
"""
if fit or (self.version is None):
self.best_fit(start=self.version)
if self.mask_pattern is None:
self.makeImpl(False, self.best_mask_pattern())
else:
self.makeImpl(False, self.mask_pattern)
def makeImpl(self, test, mask_pattern):
self.modules_count = self.version * 4 + 17
if self.version in precomputed_qr_blanks:
self.modules = copy_2d_array(precomputed_qr_blanks[self.version])
else:
self.modules = [
[None] * self.modules_count for i in range(self.modules_count)
]
self.setup_position_probe_pattern(0, 0)
self.setup_position_probe_pattern(self.modules_count - 7, 0)
self.setup_position_probe_pattern(0, self.modules_count - 7)
self.setup_position_adjust_pattern()
self.setup_timing_pattern()
precomputed_qr_blanks[self.version] = copy_2d_array(self.modules)
self.setup_type_info(test, mask_pattern)
if self.version >= 7:
self.setup_type_number(test)
if self.data_cache is None:
self.data_cache = create_data(
self.version, self.error_correction, self.data_list
)
self.map_data(self.data_cache, mask_pattern)
def setup_position_probe_pattern(self, row, col):
for r in range(-1, 8):
if row + r <= -1 or self.modules_count <= row + r:
continue
for c in range(-1, 8):
if col + c <= -1 or self.modules_count <= col + c:
continue
if (
(0 <= r <= 6 and c in {0, 6})
or (0 <= c <= 6 and r in {0, 6})
or (2 <= r <= 4 and 2 <= c <= 4)
):
self.modules[row + r][col + c] = True
else:
self.modules[row + r][col + c] = False
def best_fit(self, start=None):
"""
Find the minimum size required to fit in the data.
"""
if start is None:
start = 1
check_version(start)
# Corresponds to the code in create_data, except we don't yet know
# version, so optimistically assume start and check later
mode_sizes = mode_sizes_for_version(start)
buffer = BitBuffer()
for data in self.data_list:
buffer.put(data.mode, 4)
buffer.put(len(data), mode_sizes[data.mode])
data.write(buffer)
needed_bits = len(buffer)
self.version = bisect_left(
BIT_LIMIT_TABLE[self.error_correction], needed_bits, start
)
if self.version == 41:
raise DataOverflowError()
# Now check whether we need more bits for the mode sizes, recursing if
# our guess was too low
if mode_sizes is not mode_sizes_for_version(self.version):
self.best_fit(start=self.version)
return self.version
def best_mask_pattern(self):
"""
Find the most efficient mask pattern.
"""
min_lost_point = 0
pattern = 0
for i in range(8):
self.makeImpl(True, i)
lost_point_ = lost_point(self.modules)
if i == 0 or min_lost_point > lost_point_:
min_lost_point = lost_point_
pattern = i
return pattern
def print_tty(self, out=None):
"""
Output the QR Code only using TTY colors.
If the data has not been compiled yet, make it first.
"""
if out is None:
import sys
out = sys.stdout
if not out.isatty():
raise OSError("Not a tty")
if self.data_cache is None:
self.make()
modcount = self.modules_count
out.write("\x1b[1;47m" + (" " * (modcount * 2 + 4)) + "\x1b[0m\n")
for r in range(modcount):
out.write("\x1b[1;47m \x1b[40m")
for c in range(modcount):
if self.modules[r][c]:
out.write(" ")
else:
out.write("\x1b[1;47m \x1b[40m")
out.write("\x1b[1;47m \x1b[0m\n")
out.write("\x1b[1;47m" + (" " * (modcount * 2 + 4)) + "\x1b[0m\n")
out.flush()
def print_ascii(self, out=None, tty=False, invert=False):
"""
Output the QR Code using ASCII characters.
:param tty: use fixed TTY color codes (forces invert=True)
:param invert: invert the ASCII characters (solid <-> transparent)
"""
if out is None:
out = sys.stdout
if tty and not out.isatty():
raise OSError("Not a tty")
if self.data_cache is None:
self.make()
modcount = self.modules_count
codes = [bytes((code,)).decode("cp437") for code in (255, 223, 220, 219)]
if tty:
invert = True
if invert:
codes.reverse()
def get_module(x, y) -> int:
if invert and self.border and max(x, y) >= modcount + self.border:
return 1
if min(x, y) < 0 or max(x, y) >= modcount:
return 0
return cast(int, self.modules[x][y])
for r in range(-self.border, modcount + self.border, 2):
if tty:
if not invert or r < modcount + self.border - 1:
out.write("\x1b[48;5;232m") # Background black
out.write("\x1b[38;5;255m") # Foreground white
for c in range(-self.border, modcount + self.border):
pos = get_module(r, c) + (get_module(r + 1, c) << 1)
out.write(codes[pos])
if tty:
out.write("\x1b[0m")
out.write("\n")
out.flush()
# return true if and only if (row, col) is in the module
def is_constrained(self, row: int, col: int) -> bool:
return (
row >= 0
and row < len(self.modules)
and col >= 0
and col < len(self.modules[row])
)
def setup_timing_pattern(self):
for r in range(8, self.modules_count - 8):
if self.modules[r][6] is not None:
continue
self.modules[r][6] = r % 2 == 0
for c in range(8, self.modules_count - 8):
if self.modules[6][c] is not None:
continue
self.modules[6][c] = c % 2 == 0
def setup_position_adjust_pattern(self):
pos = pattern_position(self.version)
for i in range(len(pos)):
row = pos[i]
for j in range(len(pos)):
col = pos[j]
if self.modules[row][col] is not None:
continue
for r in range(-2, 3):
for c in range(-2, 3):
if (
r == -2
or r == 2
or c == -2
or c == 2
or (r == 0 and c == 0)
):
self.modules[row + r][col + c] = True
else:
self.modules[row + r][col + c] = False
def setup_type_number(self, test):
bits = BCH_type_number(self.version)
for i in range(18):
mod = not test and ((bits >> i) & 1) == 1
self.modules[i // 3][i % 3 + self.modules_count - 8 - 3] = mod
for i in range(18):
mod = not test and ((bits >> i) & 1) == 1
self.modules[i % 3 + self.modules_count - 8 - 3][i // 3] = mod
def setup_type_info(self, test, mask_pattern):
data = (self.error_correction << 3) | mask_pattern
bits = BCH_type_info(data)
# vertical
for i in range(15):
mod = not test and ((bits >> i) & 1) == 1
if i < 6:
self.modules[i][8] = mod
elif i < 8:
self.modules[i + 1][8] = mod
else:
self.modules[self.modules_count - 15 + i][8] = mod
# horizontal
for i in range(15):
mod = not test and ((bits >> i) & 1) == 1
if i < 8:
self.modules[8][self.modules_count - i - 1] = mod
elif i < 9:
self.modules[8][15 - i - 1 + 1] = mod
else:
self.modules[8][15 - i - 1] = mod
# fixed module
self.modules[self.modules_count - 8][8] = not test
def map_data(self, data, mask_pattern):
inc = -1
row = self.modules_count - 1
bitIndex = 7
byteIndex = 0
mask_func_ = mask_func(mask_pattern)
data_len = len(data)
for col in range(self.modules_count - 1, 0, -2):
if col <= 6:
col -= 1
col_range = (col, col - 1)
while True:
for c in col_range:
if self.modules[row][c] is None:
dark = False
if byteIndex < data_len:
dark = ((data[byteIndex] >> bitIndex) & 1) == 1
if mask_func_(row, c):
dark = not dark
self.modules[row][c] = dark
bitIndex -= 1
if bitIndex == -1:
byteIndex += 1
bitIndex = 7
row += inc
if row < 0 or self.modules_count <= row:
row -= inc
inc = -inc
break
def get_matrix(self):
"""
Return the QR Code as a multidimensional array, including the border.
To return the array without a border, set ``self.border`` to 0 first.
"""
if self.data_cache is None:
self.make()
if not self.border:
return self.modules
width = len(self.modules) + self.border * 2
code = [[False] * width] * self.border
x_border = [False] * self.border
for module in self.modules:
code.append(x_border + cast(List[bool], module) + x_border)
code += [[False] * width] * self.border
return code
def active_with_neighbors(self, row: int, col: int) -> ActiveWithNeighbors:
context: List[bool] = []
for r in range(row - 1, row + 2):
for c in range(col - 1, col + 2):
context.append(self.is_constrained(r, c) and bool(self.modules[r][c]))
return ActiveWithNeighbors(*context)